Epreuve écrite

Examen de fin d'études secondaires 2005 Section: B et C Branche: Physique	Nom et prénom du candidat	
 I Particule chargée dans un champ magnétique 1 Commenter l'affirmation suivante et la redresser s'il y a lieu: Dans un champ magnétique, une particule est toujours soumise à une force de Lorentz. 2 Etude du mouvement d'un électron évoluant dans un champ magnétique uniforme perpendiculaire à la vitesse initiale: a Montrer que le mouvement de la particule est plan et uniforme. b Etablir l'expression du rayon de la trajectoire. c Etablir l'expression de la déflexion magnétique Y sur un écran perpendiculaire à la vitesse initiale et situé à la distance D du centre de la région de longueur l où règne le champ magnétique. d Exercice : Des électrons sont accélérés par une tension U = 300 V ; ils pénètrent ensuite dans une région de l'espace de longueur l = 1 cm où règne un champ magnétique perpendiculaire à leur vitesse. Un écran, placé à une distance D = 50 cm du centre de cette région, reçoit les électrons. Quelle est l'intensité du champ magnétique qui provoque une déflexion d = 9 cm sur l'écran ? 3 Expliquer le principe de fonctionnement du spectrographe de masse. 		
Commenter l'affirmation suivante et la redresse Lors du phénomène d'induction, l'inducteur app dans l'induit. 2 Enoncer la loi de Faraday. 3 En déduire l'expression de la force électromotrinoyau de fer, d'inductance propre L. 4 Etablir la loi d'Ohm pour une bobine de résistat A vers B par un courant d'intensité i. 5 Décrire une expérience qui montre qu'une bobi l'énergie. Donner l'expression de cette énergie.	porte des charges électriques supplémentaires ice d'auto-induction e pour une bobine sans nce r et d'inductance propre L, parcourue de	

Epreuve écrite

Examen de fin d'études secondaires 2005 Section: B et C Branche: Physique	Nom et prénom du candidat
éclairé, arrache un électron du métal. L'ensemble de deux radiations, l'une orange de longueur d'onde λ ₂ = 0,75 μm, éclaire un césium dont le seuil photoélectrique est λ ₀ a Faire un schéma du montage à réaliser pou b Calculer en joules et en électron-volts l'én la cathode. c L'effet photoélectrique va-t-il avoir lieu? d Quelle est l'énergie cinétique maximale d'En déduire sa vitesse maximale.	inférieure à la longueur d'onde seuil du métal de de longueur d'onde $\lambda_1 = 0.60 \mu m$, l'autre rouge ne cellule photoélectrique à vide à cathode de $= 0.66 \mu m$. ur mettre en évidence le courant photoélectrique nergie nécessaire à l'extraction d'un électron de
IIV Later Comment	12p(2+2+2+2+3+1
frequence $N = 50$ Hz, un batteur en forme 3 cm: - si $S_1M = 30$ mm et $S_2M = 35$ mm? - si $S_1N = 20$ mm et $S_2N = 30$ mm?	il suffit d'utiliser deux lampes identiques. de est v = 50 cm/s. I de la surface de l'eau sur laquelle vibre, à la e de fourche d'extrémités S ₁ et S ₂ distantes de amplitude maximale et les franges de repos et ate. es sources, sachant que leur amplitude est

14p(2+3+4+2+3)